1660320705861 Article Whatworks Energymonitoring

Meat packing plant solves temperature mystery by monitoring energy

Jan. 12, 2011
You can't fix what you don't measure: Rising energy costs warrant monitoring system.

Meat packing plants all over the country were closing, and many others suffering financially. The Mariah Meat plant in Columbus, Indiana, was no different. Utilities represented the plant’s third largest expense, after raw product and personnel, and yet the company had little real knowledge where those dollars were going. In fact, expenditures had become so great that Mariah had sought a no-cost energy audit from the local electric utility.

When plant management, including President John Stadler, read the utility’s audit report and saw that its only suggestion for savings was a switch to more energy-efficient bulbs for the lighting system, they realized the auditors had no clue about the complex systems in the Mariah facility. With electricity accounting for two-thirds of the plant’s annual utility costs, it had become clear that the company needed to reduce its power bill if it wanted to remain in business.

To better understand and gain control of its energy bills, Mariah turned to Holmes Energy, an energy consultant specializing in facility energy conservation, system operation, control and maintenance.

Holmes Energy determined that the first phase of the Mariah Meat Packing energy management project should be discovery. This included gathering equipment lists, system schematics and copies of past utility records to provide a breakdown of electric, gas, water and sewer costs. Further examination and discussion revealed, when it came to electricity, the refrigeration compressors, cooling towers, air compressors, pumps, lights and production equipment were all running for long periods, and all were thought to be using a good deal of power. The question was one of distributing that power.

Monitoring and data collection

Holmes Energy designed and installed an AutoPilot Energy Information System to monitor, identify, manage and eventually reduce Mariah’s electrical costs. The AutoPilot system, based on hardware from Opto 22, used multiple panels installed at key locations across the plant and included I/O connections to machinery and equipment, as well as the facility’s electric meters.

The connections to Mariah’s individual machines and equipment provided the granularity needed to detect even small changes in power draw and the ability to identify precisely the heaviest energy consumers.

The refrigeration compressors, cooling towers, air compressors, pumps, lights and production equipment were all running for long periods, and all were thought to be using a good deal of power.

“Monitoring the meters alone would certainly show when every dollar was spent; but the rest of those I/O points would prove even more beneficial in that they would track exactly where those dollars went within the plant,” explains Bill Holmes of Holmes Energy. Because most of the major equipment at Mariah already had its own, independent control systems that functioned well and that plant operators were familiar and comfortable with, the AutoPilot system was designed strictly for monitoring and data acquisition purposes — with no control functions. The AutoPilot system hardware also used standard communications technologies, allowing Holmes to access and review the energy data remotely via a PC each day and provide ongoing analysis and recommendations. The real-time and historical user interface screens the system provided were representations of the actual plant and equipment.

Reports on equipment performance and consumption were made available not only in units of energy, but also in dollars. Data presentation in this format allowed Stadler and others to understand how much each plant system was costing every hour of every day. The aggregated data would soon show that Mariah’s refrigeration system accounted for two-thirds of the plant’s total electrical consumption and costs. It thus became obvious that the initial energy management efforts should focus on this system. Shortly after the energy monitoring system was installed, an industrial power engineer with the local electric company phoned Holmes and informed him Mariah was looking to add $100,000 in new electrical transformers, in preparation for adding more refrigeration equipment before summer. Holmes knew the data showed that the plant already had at least twice the refrigeration capacity it needed. A meeting was set, and the plant manager and engineering staff that had requested the new equipment were presented with evidence that showed the facility should not be having so much trouble keeping the meat cool on hot days.

“They were looking at what they were using, and I was looking at what they needed,” says Holmes. “The data from our monitoring system, when compared to the model of the energy needs of the plant, showed that even on the hottest day of the year, the plant had between two and three times the refrigeration capacity it would need. Rather than spending a lot of money on new transformers and chillers they didn’t need, we needed to find out why what they already had wasn’t doing its job.”

Dig deeper

The newly acquired data provided an opportunity to reexamine the plant’s thermodynamics and possible reasons why cooling needs weren’t being met. For instance, when live, 250-lb hogs were delivered to the plant for processing, each animal’s body temperature was about 103° F. Regulatory guidelines require that after processing, food product temperature be lowered to the cooler or freezer temperature within a fixed number of hours. Using engineering physics and the specific heat of hog flesh, one can calculate exactly how much heat needs to be removed each hour and each day from each hog and from the total plant, and thus how much refrigeration is required. Mariah’s refrigeration system needed to remove the heat from the warm product brought into the coolers and freezers. It also had to remove heat from people, lights, motors and the scalding water used for cleaning. In the summer, the refrigeration system also battled the heat that came through the roof and walls and the air that leaked in from the outside. Because parts of the building were 75 years old and the insulation wasn’t very good, it was natural for the employees to assume these were major reasons it was hard to keep the plant cool. Whatever the reason, when all was said and done, in terms of energy balance for the total plant, “heat in” had to equal “heat out.”


The Mariah personnel understood this, but the question remained: Why couldn’t they cool the plant sufficiently on hot days in the summer? Gathered data from a Monday morning at 2 a.m., when the outside temperature was –20° F, showed that the refrigeration system was providing 400 tons of cooling. This required running more than 600 hp, or approximately 600 kW. At 5¢/kWh, this cost $30/hr, or $720/day. But at 2:00 a.m. there were no lights on and no employees in the plant. No product had entered since the Friday before and all of its heat had been removed within a few hours. Everything had been cleaned and sanitized that same day. The only thing running was the refrigeration system.

Problem uncovered

Finally, they realized the answer. The freezer’s cooling coils had an automatic defrosting system. Periodically, hot refrigerant was blown through the cold coils to melt and evaporate ice buildup. The hot gas for this procedure came from piping that ran from the refrigeration plant, and old automatic valves at each coil regulated the defrosting process. If those old valves weren’t working properly and the hot gas was leaking to the coils continuously, a tremendous amount of extraneous heat was being introduced. To counteract this, the refrigeration system had to operate a lot more, ironically using much of its capacity just to support itself, and might not be able to provide enough cooling for the rest of the plant. To investigate this possibility, engineers manually closed the valves on each of the coils.

Immediately, the monitoring system showed that the electricity input ot each compressor and the total refrigeration system was dropping. The refrigeration system, for example, started out at 600 kW and ultimately dropped to less than 30 kW. When they had finished, the plant cooling load peaked at less than 200 tons, down from approximately 550, thereby affirming Holmes Energy’s contention that the cooling being provided was more than twice what was needed. Uncovering the valve problem also confirmed that Mariah didn’t need to spend the $100,000 for the new transformers, or the tens of thousands of extra dollars for new refrigeration equipment.
These avoided costs made a huge effect on Mariah’s profitability. Repairing the cooling coil valves eliminated a false load in the refrigeration system, which reduced the plant’s electrical consumption by 600 kWh-hr each day for an annual savings of $250,000. This figure was more than 25% of Mariah’s total annual utility costs.

Furthermore, many of the workers said that Mariah’s cooling problems had plagued the plant for close to 30 years. This means those bad valves could have resulted in more than $2.5 million in electrical costs. Plus, there was the loss of morale among Mariah’s employees as they constantly struggled to keep conditions safe, equipment working properly and meet regulatory guidelines — all while hampered by a strained cooling system.

The information the monitoring system provided didn’t just reduce Mariah’s utility costs; it allowed the company to increase profits by giving it a way to make critical business decisions regarding plant operations based on facts, not estimates or educated guesses. Rather than throwing money at the problem, management used the monitoring system’s accuracy to reveal flaws in Mariah’s processes. Once identified, the situation was rectified and the company, which was losing money and on the verge of closing, was able to stay in business and thrive in ways it hadn’t before.

This financial turnaround was made possible by an influx of energy-related, real-time data. Effective energy monitoring provided information that Mariah couldn’t have accessed any other way. Suddenly, employees could view data on their computer screens or in reports and have enough information to understand problems that had been a mystery before. This was the data that management needed to authorize and fund a fix it was confident would work. This led not only to immediate problems being remedied, but unnecessary expenditures being canceled, and the entire plant being reevaluated and reorganized to increase profitability under a new energy-efficient strategy.

“Knowing the utility costs associated with specific systems and areas within our plant helped us to determine that it was no longer competitive in our industry,” says Joe Brands, general manager at Mariah. “When the data showed that the utility costs associated with parts of our operation were more than twice what they would be at one of our new plants, the need for major changes was clear.“

Sponsored Recommendations

Arc Flash Prevention: What You Need to Know

March 28, 2024
Download to learn: how an arc flash forms and common causes, safety recommendations to help prevent arc flash exposure (including the use of lockout tagout and energy isolating...

Reduce engineering time by 50%

March 28, 2024
Learn how smart value chain applications are made possible by moving from manually-intensive CAD-based drafting packages to modern CAE software.

Filter Monitoring with Rittal's Blue e Air Conditioner

March 28, 2024
Steve Sullivan, Training Supervisor for Rittal North America, provides an overview of the filter monitoring capabilities of the Blue e line of industrial air conditioners.

Limitations of MERV Ratings for Dust Collector Filters

Feb. 23, 2024
It can be complicated and confusing to select the safest and most efficient dust collector filters for your facility. For the HVAC industry, MERV ratings are king. But MERV ratings...