Is an integrally geared centrifugal compressor right for you?

April 9, 2015
IGCCs can enable 8–20% better efficiency compared to conventional centrifugal compressors.

In an integrally geared centrifugal compressor (IGCC), several pinion shafts are arranged around a large central bull gear. An impeller (usually a 3D semi-open one) can be mounted on each end of a pinion shaft. Currently, machines with up to 10 impellers (5 pinions) are available. The compressor shafts can run at high rotational speeds — up to 75,000 rpm. The bull gear generally is driven by an electric motor, which can be a conventional 1,500–1,800-rpm unit or a high-speed 3,000–3,600-rpm one.

In contrast to conventional centrifugal compressors in which all impellers run at the same speed, in IGCCs each pinion can run at a different speed. Thus, every impeller pair can operate at its optimum aerodynamics speed. This is an important advantage — particularly for gases with medium or high molecular weights — that results in higher efficiencies than those of conventional compressor designs.

To learn more about integrally geared centrifugal compressors, read “Investigate Integrally Geared Compressors” from Chemical Processing.

Sponsored Recommendations

Effective Enclosure Heating

Aug. 22, 2024
Effective enclosure heating is essential for peak operational efficiency in outdoor and indoor contexts.

Busbar: The Next Evolutionary Step in Control Panel Design

Aug. 22, 2024
Learn how busbar power distribution can help control panel manufacturers unlock enhanced safety, lower costs, and a reduced automation footprint.

Reduce Contamination with the Right Enclosure for Your Food and Beverage Application

Aug. 22, 2024
Protecting electrical controls and equipment within food and beverage plants presents unique challenges due to the sanitation requirements of the hygienic environment.

Enclosure Climate Control: Achieving the Ideal Temperature

March 28, 2024
There are several factors to consider when optimizing the climate inside your electrical enclosure. Download this white paper to learn more.