The secret to reliability liftoff: How to safely check machinery while it is running

The more work you can do from the perimeter of the equipment without going into lockout and shutting down the equipment, the better.

By John Bernet, Fluke Corp.

1 of 2 < 1 | 2 View on one page

Many highly productive plants run 24 hours a day, covering three shifts, and the only planned downtime is over part of the weekend. The larger manufacturers deploy a tiered approach in which reliability personnel monitor critical machinery to predict potential failures or efficiency loss. They want to know of possible problems ahead of time so they can fill out work orders for the maintenance team, who can then make appropriate repairs when machines are planned to be offline.

That works for the big guys, such as auto and heavy equipment manufacturers, but what about plants where the maintenance team is also the reliability team and a skeleton crew is chasing machinery events just to stay ahead of the next disastrous failure?

The key is to find ways to check machinery while it is running, maintain safe practices while doing so, and then accurately document the results. The more work you can do from the perimeter of the equipment without going into lockout and shutting down the equipment down (thereby losing manufacturing throughput), the better.


Since the first humans fashioned tools out of stone, people have used innovation and technology to ease burdens and increase productivity. Now, with the ubiquity of mobile phones and wirelessly connected tools, more workers who are charged with maintaining equipment can at least partly change their orientation toward periodic predictive tasks to check assets for issues – before problems occur.

Wirelessly connected test and measurement tools that are tied together by a cloud-based storage system and software platform can help create liftoff for a reliability program without a massive investment in capital, labor, or IT infrastructure. Starting with even two tools, such as a wirelessly enabled thermal image and a vibration meter, you can create a starter reliability system that can be implemented immediately and then scaled up over time.

With a thermal imager, malfunctioning components will appear warmer than others, while failed components will be cooler or cold by comparison. Periodic inspection can reveal over- and under-heating conditions with switches, circuit breakers, motors, gear boxes, pumps, panels, and other machinery.

For machines with rotating parts, the shaking, shimmying, and thumping of loose, misaligned, or unbalanced parts can be detected with a vibration meter. Indeed, recent developments in vibration sensors, data acquisition, and analysis technologies are making vibration analysis less expensive and more widely available.

For each of these tools, data is logged by date and equipment and can easily be shared to involve more team members and even manufacturer reps or engineers in the process.

And because the thermal imager and the vibration meter can be safely used while equipment is running, they can provide an early warning system to issues.

Routine checks and analysis

A thermal imager provides a safe and easy way to monitor the surface temperature of electrical or electromechanical components. Of more importance, advances in infrared technology mean that you can now detect variance in temperature inch by inch. When charted over time, these instant readings can be used to identify and predict maintenance and repair needs, reducing the potential for failure.

With a vibration meter, you have the capability to measure overall vibration in addition to maintaining a database of real machine values to provide the user with an answer. To best execute inspections, establish a measurement route through the plant. Following the same routine during each inspection can provide time and data advantages as each piece of equipment is viewed, images and readings are captured, and anomalies are recorded. The associated software provides the mechanism to record, track, and recall readings as needed for reference.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments