3D scanning: Measurement, made better and faster

Faster and more accurate than ever, 3D scanning tools can be a powerful addition to a plant's quality control arsenal.

By Christine LaFave Grace

1 of 2 < 1 | 2 View on one page

It's measurement, made better and faster. 3D sensing and noncontact scanning technologies are transforming how many manufacturers gather measurement data both for machinery parts and assembled products – enabling faster and more accurate inspections and improved quality control. And in today's "lean"-obsessed manufacturing environment, the time savings and accuracy that 3D scanning promises for a variety of applications can translate into significant efficiencies for plants.

"I think (3D) scanning is on the cusp of great growth in the next couple of years," says Jerry Hardy, a segment marketing manager for Lake Mary, Fla.-based FARO Technologies, which makes the Focus line of 3D scanners. FARO has one of the biggest stakes in the industrial 3D scanning market, but recent analysis from Allied Market Research seems to back up Hardy's assertion. In a report issued last summer, Allied estimated that the 3D scanning market will reach $4.9 billion by 2020, with a compound annual growth rate of 12.4% through that time.

The fact that 3D scanning has extensive applications in big-bucks industries beyond manufacturing – healthcare (patient modeling), entertainment (think Microsoft's Xbox One Kinect), and architectural engineering among them – may be a boon for the technology's adoption in manufacturing. This broadening proliferation in other sectors "does increase the general awareness" of 3D scanning, says Pierre Aubrey, president of Ottawa-based 3D scanner maker ShapeGrabber. And rising familiarity with the technology encourages manufacturing companies to explore how they can make 3D scanning work for them, especially from a quality control perspective.

Twenty-five years ago, early 3D scanners were a go-to primarily for reverse engineering parts for which duplicates or product specifications were not readily available. Some plant directors still view them narrowly from that perspective, Aubrey says.

"The No. 1 misconception (about 3D scanners) is the purpose of a scanner is to reverse engineer a part," he says. Thanks to advances in hardware and software, today's scanning devices boast a range of quality control applications that take 3D scanning far beyond its original utility.

For example, by enabling computerized 3D visualization of machinery, pipes and more (and how everything fits together, literally), 3D scanning lets plant managers get a 360-degree view of their assets – especially valuable when trying to get a comprehensive view of equipment that resides in poorly lit or hard-to-access places. 3D scanning also allows for the creation of scale models of assets with unprecedented accuracy. And "smart" 3D sensors positioned along a production line enable instant scanning and measurement of items moving along a conveyor belt, allowing those that don't meet product specs to be diverted from the line.

With 3D scanning, "you're taking human error out of the equation," Hardy says. Moreover, measurement processes that used to take several hours can be completed in a matter of minutes.

In the drive to make plants "smarter," then, 3D scanning has the potential to deliver accurate measurement data more quickly, letting plant directors get a better picture of wear and tear on their assets and make better-informed decisions sooner about asset and space management in their facilities.

Evolutions in 3D scanning

A game changer for 3D scanning is the advent of lightweight, handheld sensors that can  go virtually anywhere. Boasting accuracy in the range of 0.1 mm to 1.5 mm, depending on the device, and able to capture up to hundreds of thousands of data points per second, these sensors facilitate first article inspections and tooling inspections on the plant floor. Creaform's HandySCAN 3D and FARO's Scanner Freestyle 3D are among the crop of new point-and-scan handheld tools touted for their ease of use, eminent portability and range of applications.

Beyond handhelds are similarly small-profile tools like LMI Technologies' Gocator smart sensors, which can be mounted to a robotic arm to allow for 3D inspection and scanning on an automotive assembly line, for example. (They're called "smart" sensors because they're designed to combine 3D scanning, measurement, and sorting and pass/fail control functionalities within one device, negating the need for an accompanying PC and software.)

What all of these next-generation 3D scanning and sensing systems have in common is that because they don't require contact with the surface of an object, unlike traditional coordinate measuring machines (CMMs), they can capture millions of data points exceptionally quickly – within a few minutes. In addition, they can be an appropriate choice for collecting data on soft surfaces (those that would yield upon contact with a CMM probe, resulting in inaccurate measurements and an inaccurate 3D model) or highly complex shapes.

For digitalization and measurement of large objects and machines and for surveying applications, tripod- or base-mounted 3D laser scanning tools may be more appropriate. FARO notes that the 3D models its Laser Scanner generates can be used for building management, as-built documentation for CAD modeling and other large-scale design and control tasks. With accurate, up-to-date 3D models of their facilities, manufacturers may be better able to plan maintenance and downtime work and identify opportunities for space optimization.

"You have 100 percent confidence that what you're bringing into your CAD programs is truly representative of what's on your floor," Hardy says. "What you see is what's out there."

Tabletop or stationary noncontact 3D scanners can be valuable for smaller, off-site scanning jobs – an obvious application is for periodic parts inspection in a specialized metrology lab – and documentation of new parts and prototypes. Again, when the surface of an object is fragile or intricate, noncontact 3D scanning can allow for accurate measurement and preservation of the integrity of the object.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments