Who's designing your compressed-air piping system?

Compressed-air piping size impacts control and cost.

By Ron Marshall, Compressed Air Challenge

1 of 2 < 1 | 2 View on one page

In brief:

  • Consider piping anytime you change your compressed air system
  • A powerful driver leading to piping-system problems is the cost of installation.
  • Following best practices in sizing piping can save you money and help optimize the operating of your compressed air system.

The installation of the piping system is often a forgotten element in compressed air system design, but piping problems can have a big effect on how well your system performs. Much attention is placed on the actual first cost of the compressed air equipment and the efficiency characteristics of the main system equipment such as compressors and dryers, but decisions on the pipe sizing and routing are often left to others, and they might not have your best interests in mind.

Why design is typically left to others

A powerful driver leading to piping-system problems is the cost of installation. Hiring a system engineer to size and lay out the piping stretches already thin budgets and is often looked upon as an unnecessary expense. But plant personnel are typically generalists, having a broad knowledge of their field, but often having little specific compressed-air-system design skills. Plant personnel are usually very busy individuals with barely enough time to perform their normal duties, let alone research and design a compressed-air system. So, these duties are usually passed on to the seller of the compressed air equipment as part of a turn-key package price.

These equipment providers are often under budget pressures of their own with their managers looking for them to turn a profit on the sale and installation of this equipment and to do it as quickly as possible. Sometimes the equipment vendors no have designers or pipefitters on staff to assist with the system layout and sizing. Too often the pipe installation is subcontracted out to the lowest bidder with only general instructions given to install the compressor and dryer. In many cases, the responsibility for the layout and design then falls on a contractor or in worst cases his helper, with instructions to do it in the least expensive manner possible.

When it comes to cutting costs, the pipe size is one of the first items to be adjusted. If nobody specifies the size and how the piping is to be run, then it is up to the person who installs the piping. And, if he is the one paying for the pipe on a fixed-price job, there is a chance the piping system will end up too small.

What’s at stake

A rule of thumb in the compressed air system energy field is that, for every 2 psi increase in compressed air pressure, the compressor energy cost increases by 1%, at a pressure of around 100 psig. Undersized or poorly laid-out piping forces compressor discharge pressures to rise to compensate for excessive pressure differential. In a normal plant, there will be a number of critical pressure end uses that need a consistent pressure of, for example, no lower than 90 psi or production will be affected. If there is a 20 psi pressure differential in the system piping, then the compressor discharge pressure needs to rise at least 20 psi to ensure the minimum pressure is maintained at the critical user. This rise costs an additional 10% in energy costs at the compressor.

But there are additional costs that may come into play. In piping systems, the maximum pressure differential and the resulting lowest pressure at the end user happens only during system peaks. In most cases this maximum pressure differential appears only during a small fraction of the total system operating hours, and yet the system pressure is maintained at an artificially high pressure all the time to compensate for the occasional peaks. And the higher pressure acts on unregulated air demands that are pressure sensitive, causing them to consume a little less than 1% more air for every 1 psi increase. This high pressure typically does not result in improved production at the end use, but the additional flow, called “artificial demand,” further increases electrical costs.

Compressor control can be affected

For every 2 psi increase in compressed air pressure, the compressor energy cost increases by 1%, at a pressure of around 100 psig.

In addition to this, the control of air compressors can be negatively affected by the differential pressures caused by undersized piping. This is more of a factor when dealing with lubricated screw compressors that run in load/unload mode because, in the “load” condition, the compressor passes full flow creating maximum pressure differential in its associated piping each cycle. Excessive pressure differential between the compressor and the system storage compressor can cause rapid cycling of the compressor and drive down-unit efficiencies significantly. For example, a 5 psid piping differential will almost double the frequency of compressor cycles on a compressor set for a 10 psi wide pressure band setting. Excessive cycle frequency wears out the compressor prematurely and increases energy consumption.

An example of the costs that might be incurred for a continuously operating (8,760 annual hours) typical 100 hp compressor at 65% load and at 120 psi and $0.10/kWh power cost would be around $60,000/year. At a lower discharge pressure of 100 psi, reduced artificial demand, and optimized cycle frequency, the operating costs would fall to about $46,100/year for a savings of 23% worth $13,940 per annum. That kind of savings over 10 years could buy a lot of pipe.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments