Embrace the shutdown

There’s no better opportunity to improve the reliability of hydraulic systems.

By Al Smiley

1 of 2 < 1 | 2 View on one page

Unfavorable market conditions have shut down many plants temporarily. Others have regularly scheduled shutdowns during the year. Maintenance departments frequently take advantage of these opportunities to repair or perform testing that can’t be done when hydraulic machinery is operating. But given the lull in the action, many times the only attention a hydraulic system gets is an oil and filter change.

If those are the only two tasks on your work order, they won’t necessarily increase reliability. You’ll need to perform several other checks and procedures during down periods to boost the odds of gaining system efficiency and operation when production demands are high. The following preventive maintenance checks will reveal other maintenance work that will improve system and machine performance.

Clean the reservoir

Now is an ideal time to clean the reservoir (Figure 1). Maintenance mechanics and electricians chuckle when I tell them that the reservoir should be cleaned at least once a year. While consulting with a large wood products plant, the mechanic said that the reservoir on one system hadn’t been cleaned since the mill started up 17 years before. Beyond oil storage, the two main purposes of the reservoir are to allow contaminants to settle and to dissipate heat. If the reservoir isn’t cleaned, it’ll act as a heat sink and can cause the system temperature to rise above 140°F, the point at which oil starts breaking down, adding sludge and varnish to the system. If the contaminants aren’t removed from the reservoir, they’ll be drawn into the pump and cause premature failure of the system components. And, of course, be sure to use lint-free cloths when cleaning out the reservoir.

 

Figure 1

The reliable hydraulic system reservoir needs to be outfitted with specific components.
Key:
1. Reservoir
2. Reservoir heater thermostat
3. Manhole
4. Level indicator
5. Suction line
6. Foot valve/filter screen
7. Level switch
8. Breather cap
9. Temperature indicator
10. High-temperature switch
11. Manual drain valve
12. Water-type cooler

 

 

Clean and flush

When you clean the sump, you don’t necessarily need to replace the hydraulic fluid. Unless the oil is severely degraded, all you need to do is run it through a 1-micron filter into a storage tank to remove solid contaminants and water. Then, run the oil through a clean 1-micron filter when refilling the sump.

The next step is flushing the lines to the valves and actuators with clean oil. Figure 2 shows the flushing unit we use for this process. Connect the inlet and outlet lines of the cylinders and motors together. If possible, electrically or manually actuate the directional valves to allow the fluid to circulate through the piping. If this isn’t possible, bypass the directional valves by connecting the pressure and tank lines to the actuator’s outlet lines. Use the pump on the machine to circulate the oil through the lines. Connect the flushing unit so it circulates the oil in the reservoir through 1-micron filters. Allow the system to run for as long as possible. Figure 3 shows the purity of the oil for a system before it was flushed, then after one, four and 16 hours of flushing.

 

Figure 2
Circulate filtered oil from the refilled sump through the system to flush contamination out of the other components.

 

Other reservoir tasks

An important variable is the reservoir heater setting. Check the reservoir heater thermostat (item 2 in Figure 1) to verify that it toggles on at a minimum temperature of 70°F. A pump mounted on top of the reservoir can cavitate if the oil temperature drops below about 60°F.

Insufficient oil depth can cause problems, so most reservoirs feature two switch settings (item 7 in Figure 1) - a warning and a shutdown. The problem with this configuration is that the difference between the two levels might represent several hundred gallons of oil. Eliminating the warning switch and setting the shutdown at a higher level minimizes the oil loss should a hose rupture.

Next, verify that the breather cap (item 8 in Figure 1) has a rating of about 10 microns. This is the first line of defense against airborne contaminants entering the tank. Depending on the location, the breather cap might need to be changed a couple of times a year. Other options include pressurizing the reservoir with an internal bladder or using a moisture removal-type breather.

High temperature can undo your efforts. Oil starts breaking down at 140°F, but many systems won’t initiate system shutdown until the oil temperature reaches 160°F. If your hydraulic system is operating above 140°F, there’s a problem in the system that might be traced to a cooler malfunction or excessive bypassing at the pump, valves, cylinders and hydraulic motors. Set your high-temperature switch (item 10 in Figure 1) at 140°F to shut the pump off and prevent oil breakdown.

Figure 3
In round terms, the longer you can permit the hydraulic fluid to circulate during the flushing operation, the cleaner it will become.

Now for the system

Heat exchangers need flushing and cleaning. Flush the tubes in a water-type cooler (item 12 in Figure 1) periodically to remove deposits. A mild alkaline solution such as Oakite or a 1.5% solution of sodium hydroxide or nitric acid can be used. If your system uses an air cooler, verify that the fan turns on when the oil temperature reaches about 118°F. Use combs to straighten the fins on the unit if necessary.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.

Comments

No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments