Piping systems constitute a major part of modern chemical plants, by some estimates accounting for 20–35% of the total cost of facilities. Unfortunately, piping systems have caused many reliability and safety incidents. So, their reliability, integrity and safety demand rigorous evaluation.
Piping stress analysis is a critical tool to prevent premature failure of piping and piping components and ensure piping stresses and all related loads remain within allowable limits. It enables the timely checking and verification of important parameters such as stresses, loading, leakage, safety of related and connected equipment (nozzles), and piping deflection. Here, we’ll review the basics of piping stress analysis and also present a case study.
Piping configuration, nozzle loads, spans and supports all impart stresses on the system. It is essential to confirm that different parts and components can withstand the stresses (internal pressure, thermal stresses, etc.) posed by regular, transient and abnormal operations as well as maintenance, e.g., pressure testing. In addition, the analysis should consider occasional and intermittent events such as vibration, fluid hammer, flow-induced vibration, high wind, earthquakes and more.
To learn more, read "Understand The Basics Of Piping Stress Analysis" from Chemical Processing.