1904-pdm-covesto
1904-pdm-covesto
1904-pdm-covesto
1904-pdm-covesto
1904-pdm-covesto

[Case history] Machine learning for predictive maintenance

April 16, 2019
Predictive maintenance: Pedal to the metal

Run-to-failure is increasingly reserved for rare and unique circumstances. This trend started when increasingly capable condition inspection and monitoring tools shifted the asset management focus from “fix what’s broken” to “keep it from breaking down.” Today, unprecedented opportunities afforded by the industrial internet of things (IIoT) have further changed the playing field, and there are potential benefits yet to be realized.

For example, predictive maintenance (PdM), originally based on selected asset condition data, has grown to accommodate online, real-time streams of multiple types of condition data received via sensors and even drones. Some companies are applying machine learning (ML) to further refine their predictive analytics and prognostics.

The newest opportunity, prescriptive maintenance (RxM), is a multivariate approach that merges asset condition data with any combination of operating, environmental, process safety, engineering, supplier, or other related data to better diagnose conditions and prescribe specific options for corrective action. The advanced analytics, pattern recognition, modeling, ML, and artificial intelligence (AI) that empower RxM may help companies finally greatly curtail, if not eliminate, the need for reactive maintenance on critical equipment.

Covestro was skeptical about the value of machine-learning models, says Jane Arnold, EVP and head of global process control technology, but a study the company did on a large motor failure found that “through ML, we could have detected anomalies starting eight months prior to failure.”

Polymer materials manufacturer Covestro has a vigorous PdM program utilizing traditional condition monitoring rules and algorithms; this is facilitating high overall equipment effectiveness (OEE) for the company’s sites globally.

Covestro will pair this knowledge with ML models for better predictive accuracy, with the goal of further increasing on-stream time and throughput. The company is also starting a pilot for RxM but does not expect to have full results for another year.

“We are still early in utilizing ML for PdM, but we have performed several use cases and are excited about the results,” says Jane Arnold, an executive vice president and the head of global process control technology at Covestro.

One recent use case is a study on a large motor failure. “I was skeptical that the ML engine would be able to detect the failure because there was only data available in one-hour intervals and only whole-number increments on temperatures,” says Arnold. “But, once we completed the study, we found that through ML we could have detected anomalies starting eight months prior to failure.” As a result, Covestro is now identifying all critical equipment that could result in significant production loss due to failure and will check the feasibility to create ML models for them.

In addition, a rollout plan is being formulated. “Our tentative plan is to have a dedicated group in each region that monitors the data models, keeps them healthy, and recommends corrective or preventive maintenance activities when needed to the responsible plant engineers and plant managers based on the data interpretation,” explains Arnold.

Covestro strongly believes that keeping humans as part of the equation is necessary in order to achieve the highest success rate. “Put your best experts on the advanced PdM program using ML,” urges Arnold. “The key is to involve and convince the experts of what is possible. Then, there are no limits to the applications.”

About the Author

Sheila Kennedy | CMRP

Sheila Kennedy, CMRP, is a professional freelance writer specializing in industrial and technical topics. She established Additive Communications in 2003 to serve software, technology, and service providers in industries such as manufacturing and utilities, and became a contributing editor and Technology Toolbox columnist for Plant Services in 2004. Prior to Additive Communications, she had 11 years of experience implementing industrial information systems. Kennedy earned her B.S. at Purdue University and her MBA at the University of Phoenix. She can be reached at [email protected] or www.linkedin.com/in/kennedysheila.

Sponsored Recommendations

Limitations of MERV Ratings for Dust Collector Filters

Feb. 23, 2024
It can be complicated and confusing to select the safest and most efficient dust collector filters for your facility. For the HVAC industry, MERV ratings are king. But MERV ratings...

The Importance of Air-To-Cloth Ratio when Selecting Dust Collector Filters

Feb. 23, 2024
Selecting the right filter cartridges for your application can be complicated. There are a lot of things to evaluate and consider...like air-to-cloth ratio. When your filters ...

ASHRAE Standard 199 for Evaluating Dust Collection Systems

Feb. 23, 2024
This standard ensures dust collection systems are tested under real-world conditions, measuring a dust collector's emissions, pressure drop, and compressed air usage. Learn why...

Dust Collector Explosion Protection

Feb. 23, 2024
Combustible dust explosions are a serious risk, and an unprotected dust collection system can be a main cause. Learn what NFPA-compliant explosion protection you need to keep ...