IIoT / Big Data Analytics / Smart Manufacturing

Making the IIoT work for you (not the other way around)

Big numbers about connected devices don’t mean much for your business. Here’s what does, and what to ask.

By Burt Hurlock, Azima

Insiders and outsiders will pitch you all day long on the value and virtues of big data and the industrial internet of things. People demand to know why you aren’t doing more with and for the IIoT. It’s enough to make you think you work for the IIoT, rather than the other way around.

Here’s a piece of advice: Make the IIoT work for you. Every time someone pushes an IIoT or big-data solution on you, ask three simple questions:

  • What business results will this deliver? (Note: “Visibility” is not a business result.)
  • Will this deliver relevant data or just more data?
  • What do actual users need, want, and say?

The broader picture is this:

“Technology doesn’t achieve results; people do.” It’s old logic. In the right hands, technology is relevant, even critical. The same technology in lesser hands achieves nothing, or worse.

The best evidence of the IIoT’s infancy is that many conversations about it still focus on the technologies themselves. “Terabytes of data…in the cloud…machine learning…artificial intelligence.” It’s a brave new world that belongs to the innovators, the scientists, the technologists. But are they users? And if they’re not, what do they understand about users? Do they know enough to parse the relevant data from all the other data – the so-called junk data?

The accepted wisdom of the IIoT is that more information is better – that infinite information means perfect visibility and total situational awareness. Performance, safety, and efficiency are bound to improve, the logic goes, because more data means better insights, clearer understanding, cleaner interventions, and, eventually, perfect equilibrium.

The sheer scale of the information makes people shift in their seats, but what are the real implications? The CEO of a major global industrial company opened his speech at a recent industry conference with the following statement: “Next year there will be eight billion connected devices.” A hush fell on the crowd. It’s a big idea. But why is it important? Is it important? Will these devices tell us something new, something relevant?

Big-data scientists on Wall Street learned decades ago that correlations are dangerous things. They can be random, nonsensical, and consistent until they’re inconsistent. Betting on them has been risky. Wall Street learned that data without context – data in a vacuum, without precedents or without an understanding of the factors underlying and contributing to it – can be catastrophically misleading.

The IIoT will be different only when the data ties back to step-change improvements in performance – lower costs, higher output, and better safety – based on insights gleaned from knowledge that wasn’t available before the IIoT.

For a time, it felt like the IIoT heralded the industrial age of Aquarius: Variability would be tamed by common understandings of optimization and risk management. The algorithms, machines and computers would take over; waste and inefficiency would vanish; accidents would cease; and performance would settle around optimized production models. Disparities in performance across enterprises would narrow, too, and we would finally lay to rest the age-old debate about machine failure – the data would distinguish among operator, process, and design-induced breakdowns.

Here’s the problem: There are corners of the IIoT world where emerging applications make a difference. The same applications in other corners of the IIoT world make no difference at all. Understanding why couldn’t be more important because the IIoT really is different in at least one important way. IIoT data is playing a new role. Data isn’t just revealing how machines perform and fail; it’s revealing how they’re being operated. At massive scale, what used to be measures of mechanical integrity are becoming barometers of competence and culture. Knowing what went wrong has long been within reach. Increasingly, the IIoT can show us how it went wrong, and that is new.

IIoT data will challenge the world’s large, distributed industrial organizations because it will expose complex, ingrained, modified, partially adopted, and explicitly ignored practices throughout the enterprise. Early in the IIoT age it was easy to imagine that data was pure and uncompromised, that it offered clearer truths, surer knowledge, and undisputed facts. It had something of an idealistic, democratic, “the numbers don’t lie” appeal, until users discovered how data can have an agenda, too.

Like all information, data can be skewed to political purpose, to alternative facts, or for clandestine monitoring. Data has the power to free, but it also has the power to influence, to shade, and to color. Whose data is being used, and for what purpose? These are important IIoT considerations. Is data giving us the whole picture? And equally important, is it giving us a picture that is useful, helpful, and actionable?

How the technologies powering the IIoT play across all of the frontiers of the extended enterprise will determine the IIoT’s fate. Machine learning and artificial intelligence can launch careers and end them. How managers apply these technologies will determine how they’re adopted.

Can data make the enterprise flat, transparent, and unified in its understanding of how to optimize performance?

Maybe. Emerging IIoT technologies hold tremendous potential to achieve highly efficient and safe production operations, but they don’t address how organizations use data. People decide the use cases, and the deciding is the easy part. Business processes must follow, and the organization in its many parts must willingly participate.

Pretty soon we’re back at the beginning: “Technology doesn’t achieve results, people do.” Making the IIoT relevant requires answers to a few simple questions:

  • What business results will this deliver?
  • Will this deliver relevant data, or just more data?
  • What do actual users need, want and say?

Understanding today’s performance gaps among industrial enterprises may be the easiest way to anticipate the impact of the IIoT. Top-quartile industrial performers have three times fewer HSE recordable events, 20% lower operating costs, spend 50% less on maintenance, and achieve 10% higher utilization. Will the IIoT close these performance gaps or widen them? The answer will depend on how well businesses recognize the data that’s relevant to improving their business. And people (the people who actually use the data), not technology, will decide that.