Don't let the compressed air out

Pay attention to compressed air preparation to improve efficiency and prolong equipment life.

By Charles Werdehoff, IMI Norgren

1 of 2 < 1 | 2 View on one page

You’ve got the right compressor and you’ve specified the right pneumatic tools for each task that compressor powers. But you haven’t maximized efficiency yet. Ten percent to 30% of all energy consumed by the average industrial facility is used to generate compressed air, so you want to be sure you’re getting value for that money – high productivity and minimal waste.

Once you’ve right-sized the compressor and tools, where else can you look for efficiencies? Try looking at the air delivery system between the compressor and the tool. Managing air quality and delivery can prolong equipment life, extend maintenance cycles, and reduce energy consumption. Here’s how.

Air preparation: Room for improvement

Air leaving a compressor usually contains water, compressor oil, dirt, rust, pipe scale, and/or other foreign material, and compressing the air concentrates these contaminants. This creates several potential problems:

  • Improper or erratic tool operation
  • Premature tool wear and failure
  • Shortened component life
  • Reduced capacity
  • Formation of rust and sludge in the main and branch lines
  • Higher operating costs for compressed air

Removing contaminants helps avoid these issues, and the first step is filtration. Installing a general-purpose filter at the main distribution line is a good start, but installing additional filters near the tools can further protect them from damage and wear. Also, choosing the right level of filtration for each tool prevents unnecessary pressure drop (loss of power available to do the job) and extends filter life.

For example, for most tools and equipment, filtering out particles down to 40 microns is sufficient, but for applications such as high-speed pneumatic tool use or process control instrumentation, you may need to filter particles to as small as 5 microns. Paint spraying or food-related applications may require removal of particles down to 1 micron or smaller. Clearly, choosing the right level of filtration is important, but overdoing it is costly. Using a 5 micron filter where 40 microns would be sufficient is not only more expensive initially, but also it could cost more in energy and maintenance. Even where fine filtration is required, you can save money by installing a prefilter upstream to remove larger particles before they clog the finer filter element.

The next step is regulating the air pressure. Yes, there is a pressure switch at the compressor and you always want to have adequate pressure available for full demand, but every item of pneumatic equipment has an optimum operating pressure and flow. Exceeding that pressure rating adds unnecessary loading and wear as well as increasing energy costs. The solution is to install regulators near each tool or set of tools to deliver compressed air at the most efficient pressure.

A note about regulating compressed air: When a pressure drop is detected, it is tempting to just turn up the regulator. You’ll save more by first looking for and solving the problem that caused the pressure drop. For example, undersized piping, dirty filter elements, and friction caused by poor tool lubrication all can contribute to pressure drop. 

This brings us to the third step: lubrication. Keeping tools – even prelubricated tools – lubricated can prolong their life and keep them efficient and productive. The air preparation system can be a good way to add continuous lubrication. Typical direct feed (oil-fog) lubricators need to be placed no farther than 15 feet from the tool they are lubricating (and level with or above the tool). Microfog lubricators atomize oil particles so they can travel longer distances, up or down, and through intricate flow paths and lubricate multiple tools.

A lubricator is almost always used after a filter and regulator have preconditioned the air. These can be stand-alone components or integrated as one filter-regulator-lubricator (FRL) combination.

Saving energy: It's not just the compressor

Plant operators are always looking for ways to use the compressor more efficiently, but there are additional opportunities to save energy between the compressor and the tool.

Leakage is the major source of energy loss in air distribution systems. A typical plant can lose 20%–30% of its compressed air, the U.S. Energy Department notes, through poorly connected pipe joints, fittings, or couplings. A single quarter-inch leak can cost more than $5,000 per year in wasted energy, and many such leaks can be repaired in under an hour, so payback is immediate and immense.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.

Comments

No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments