Ultrasound equipment revolutionizes predictive maintenance

It now provides improved monitoring of processes and equipment in wide ranging applications.

By Leonard Bond, Paul Panetta, Richard Pappas and Judith Bamberger

1 of 2 < 1 | 2 View on one page

It's estimated that more than $1 trillion is spent each year to replace perfectly good equipment because no reliable and cost-effective method is available to predict its remaining life.

Ultrasonic techniques offer the ability to acquire physical property data that indicates process quality or equipment problems. Ultrasonic signals are inherently well suited to provide information about materials moving through piping or vessels. While ultrasonic sensors are used widely to measure level and flow, they also can monitor fluid and slurry velocity and rheology, particle size distribution and concentration, and can detecting plugged filters and pipeline fouling without a need for sampling manually or shutting down a process.

The physics of ultrasonics are not new. Ultrasonic measurements have been available for more than 50 years, but until recently, only as highly specialized and costly scientific instruments. With advances in computers and microelectronics, ultrasonic systems can be a cost-effective and valuable addition to a company's process measurement capabilities. High-speed analog-to-digital conversion cards now allow measurements to be conducted on-line and in real-time, often preventing process downtime.

In addition, ultrasound can penetrate vessel and process walls to interrogate fluids and dense, opaque suspensions. Noisy process conditions won't degrade the performance of the measurement electronics because the ultrasonic signal frequencies differ from those of machinery.

Researchers at the Department of Energy's Pacific Northwest National Laboratory in Richland, Wash. are developing a suite of complementary instruments and methodologies to monitor physical characteristics of flowing materials, mixtures or chemical reactions quickly, accurately and non-invasively.

A harsh beginning
The researchers initially focused their ultrasonic measurement expertise on what is arguably the toughest measurement challenge--the highly toxic and rugged environment inside radioactive waste tanks.

To monitor colloids, slurries and particulate-laden flows contained within these million-gallon tanks, it was necessary to develop innovative means to characterize the material remotely, yet get information that was deeper than just near the surface. Ultrasonics proved to be a valuable method.

The research team now is applying its know-how to food processing, polymer process streams, consumer product manufacturing, chemicals, petrochemicals, pharmaceuticals and coatings.

Measuring the flow
The ultrasonic Doppler velocimeter provides non-invasive, real-time capabilities for continuous monitoring of key physical properties of liquids and slurries. Initially created to monitor the flow of waste streams and identify potential plugging problems, the technology has shown itself to be even more versatile, with an array of possible applications in manufacturing.

The design has been refined recently to address limitations in the maximum measurable flow rate, the velocity profile accuracy and the Doppler signal-to noise ratio. It integrates interface detection and measurements of concentration and rheology into a single ultrasonic monitoring unit.

Known as the Real-Time Ultrasonic Rheometer and Fluid Characterization Device, this technology represents a combination of advances in signal processing, sensors and miniaturized electronics. It relies on measurement of the Doppler frequency shift of scatters within a pipe flow or moving tracer particles. Changes in the velocity profile provide early detection of flow problems caused by fluctuations in the slurry's rheology and physical properties. They indicate the presence of air or the onset of settling, saltation and gelation.

Rugged enough for manufacturing environments, the device provides novel performance in terms of automation, resolution, penetration and maximum flow rates. It economically monitors and extracts information, including shear thinning, yield stress and the build-up of wall deposits.

Because ultrasound waves penetrate metal and plastic pipes and vessels, transducers can be mounted into a spool piece or simply strapped to the outside of the piping. With its multi-transducer configuration, it continuously sends and receives signal pulses through the piping and flowing material and extracts ultrasonic time-of-flight information, amplitude measurements and range-gated Doppler data. This information is combined with a temperature measurement to yield the speed of sound in the material, ultrasonic attenuation, average flow rate and flow velocity profiles.

Ultimately, the information extracted is analyzed, used to measure properties, such as texture and consistency, and displayed on a computer for use by operators.

The researchers field tested the technology at a tomato processing plant and at a personal care product manufacturer--two operations that require exacting texture and consistency control. In addition, the device can monitor polymer process streams.

Early detection of fouling, clogging and failure
Ultrasound has also proved beneficial in early detection of fouling and clogging in filters and piping. Current methods that use backflow and permeate flux measurements do identify fouling, but rather late in the process. Plant managers can save money and reduce unnecessary downtime by using ultrasonic measurements to identify fouling before it becomes a problem and to determine the best time to backflush or change out equipment.

Pacific Northwest National Laboratory used the technology to detect fouling on reverse osmosis units at a pilot scale service water system, a polymer processing plant and at a petrochemical facility. It likely has applications at a variety of industrial sites.

One researcher developed pulse-echo ultrasonic measurement into a technique called acoustic time domain reflectrometery (ATDR). It can be used to study fouling and compaction in membrane separation systems. Other applications include monitoring sedimentation, solidification, membrane treatments and characterization of inorganic, bio and particulate fouling in a variety of processes.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments