Prevent roofing structure and membrane failure

Selection of a roof drainage system is important to your building's long-term success.

By Dennis Connelly

1 of 2 < 1 | 2 View on one page

Roofs protect our property, processes and products from the elements.

While roof structure failure is fairly rare, roof membrane failure, however, is not. The consequences of roof leaks range from nuisance to economic devastation. Aside from cleanup and roof repair, the costs include damage to equipment and processes, loss of productivity and destruction of product.

Causes of roof leaks can be subtle and difficult to pinpoint. Obvious causes may be embrittlement and cracking of aging roofing material and atmospheric and environmental degradation. Weather-related damage is also fairly easy to recognize. Other failures may be service related — either lack of routine service (clearing debris, leaves, etc.,) or as a result of service, such as a mishap during rooftop equipment repair. These are often harder to locate, isolate and repair.

Roofing systems

Roofing systems have evolved through the years, driven by building technology, size and function. Steeply pitched roofs are ideal for long life in a varied environment. They drain water almost immediately and shed snow and ice with little effort. However, geometry and economics limit their usefulness for covering large areas such as industrial buildings.

Slope depends on environmental conditions, roof system construction or other roof functions besides weather protection. In most cases, unless the roof is intended to store it, the goal is to move water off as quickly as possible.

Industrial buildings need large, open spaces, which requires large roof areas. Because of this scale, industrial buildings have “flat” roofs. Flat roofs actually slope from 0.5 inches to 0.25 inches per foot. Slope depends on environmental conditions, roof system construction or other roof functions besides weather protection. In most cases, unless the roof is intended to store it, the goal is to move water off as quickly as possible.

Broadly speaking, the great majority of industrial buildings use either a plasticized or rubberized membrane roofing system, or a built-up system with multiple layers of mopped hot bitumin. Each system has merits and limitations, but for this discussion, there is no distinction to be made here.

Roof slope can have a considerable impact on the building’s structure. A roof sloped uniformly at 0.25 inches per foot will drop more than four feet across a 200-foot length. Longer runs and steeper slopes increase the elevation change and can greatly impact the available interior space. One common method to reduce the impact is to slope and counterslope the roof (see Figure 1).

Another factor influencing slope is the need for secondary drainage. Current building codes require that roof construction not allow water to accumulate to a depth that could result in structural failure. For example, water can become trapped by the saw-tooth roof arrangement, by a parapet or by adjacent buildings. When this occurs, a secondary drainage system or relief must be provided.

External drainage systems

External drainage systems are divided into two types: an external gutter with a downspout or a scupper with a conductor head and downspout.

External gutter and downspout

This is the lowest cost and easiest method of roof drainage available. It is characteristically a sheet metal gutter that is fastened to the building face or fascia after construction is completed. The roof edge detail is usually a gravel stop with drip-edge flashing and counterflashing. The lightweight construction makes it a good choice for smaller roof areas not susceptible to damage by vehicles or equipment. The relatively small gutter cross-sectional area limits the amount of roof that can be served. This system normally does not require secondary drainage. Typical materials of construction are aluminum, stainless steel and galvanized, steel-edge flashing, gutters and downspouts.

Scupper with conductor head and external downspout

A scupper with conductor head and an external downspout offers a higher level of performance and costs more than an external gutter system. Scuppers are used where a building has a parapet raised at the roof edge. Water flowing over the wier falls through air into the conductor head. The components consist of a scupper box with flashing and counterflashing, a conductor head, and downspout. The scupper size is based on the rainfall rate, roof area and discharge capacity.

This system is reliable and appropriate for large roof areas. Typical materials of construction are stainless steel, copper or galvanized steel.

The conductor head is a large, box-shaped receiver that collects water from the scupper and routes it to the downspout. The downspouts are usually round or rectangular. Secondary drainage must be considered, but often this is included in the capacity of the primary scupper. Because the junction between roof and parapet must be properly  flashed and counterflashed, this design receives greater scrutiny and detailing by design professionals and contractors. This additional attention often includes details of mounting locations and techniques for the conductor head and downspout. This system is reliable and appropriate for large roof areas. Typical materials of construction are stainless steel, copper or galvanized steel.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.

Comments

No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments