Tips on purchasing pumps

Not-so-common tips you should know before making a pump decision.

By Craig Redmond, P.E.

1 of 2 < 1 | 2 View on one page

Today, information about sizing a pump correctly, buying one rationally, and related material are readily available regarding most pumping applications. But it’s what isn’t so commonly shared that can lead you to disappointment and unnecessary headache.

Many areas should be considered that could, indeed, affect pump life and quality, and the quality of the application — above and beyond pump performance. Consider these key factors before finalizing your hardware and application choices to increase pump reliability, substantially reduce the total cost of ownership, and increase the product’s return on investment.


Many applications feature particles suspended in the pumped fluid. The solids range in size from small bits of sand and rock, to potato scraps or sewage. What’s being pumped could be very abrasive, with the texture of liquid sandpaper that quickly wears away metals. Knowledge about material science can assist in warding off erosion.

A fair amount of uncertainty exists in most system head calculations.

– Craig Redmond, P.E.

Austempered ductile iron (ADI) is a very hard material that can protect the inner workings in an abrasive environment. CD4MCu, a hardened, stainless steel developed for chemical and abrasive applications, also is suitable for wear parts, including wear plates, seal plates and impellers. Many other components also are at risk, such as the volute and pump shaft. In some cases, a hardened volute of either ADI or CD4MCu and hardened shaft, manufactured with 17-4 PH, a type of stainless steel, are available to meet the rugged needs that some pumping applications demand.

Hardened shaft sleeves also are available for those tough applications, as are hard mechanical seal faces fabricated from silicon carbide or tungsten carbide. These hard seal faces won’t deteriorate very rapidly in a harsh, abrasive environment.

A less-than-suitable material might already be installed in an existing abrasive application. In this case, knowing what questions to ask when considering a better solution can be critical. If you’re pumping abrasives, hardened components count for a lot. Premature seal failures lead to increased downtime and maintenance expense, while worn impellers and other wear parts can lead to decreased pressure and flow.


Figure 1. It’s important to have access into the pump without having to disturb the plumbing or drive.
Figure 1. It’s important to have access into the pump without having to disturb the plumbing or drive.

A primary cost of ownership is the time required to maintain a pump. At some point, every pump will require maintenance. Repairing it quickly and efficiently saves money. Being able to remove the rotating elements without disturbing the plumbing saves valuable time. Investing in a pump with a back cover plate is a smart move. Also, over time, abrasion and wear will open up internal clearances, so you’ll need a way to renew those clearances easily.

Self-cleaning features reduce the frequency of clogs forming when stringy matter is being pumped (Figure 1). Clog-prone applications might include sewage, meat processing, hair and rags — anything that can wrap around something else. Resisting clogs maintains efficiencies and decreases downtime.

OEM parts and availability

Nobody buys a pump just to admire it. Pumps are intended to get the work done. And, if a pump fails, the need for that work to be completed continues. You’ll need to have ready access to spare parts to get the pump back up and running.

There are several smart reasons to invest in OEM parts: because a manufacturer’s reputation is at stake, your assurance of getting quality and reliability are increased. The manufacturer invested years — often decades — of research and development to ensure product quality. By providing basic information off of the pump nameplate, you should be able to rest assured you will receive the correct parts, in the correct materials when you order from the OEM. When you add it up, investing in OEM parts is an intelligent insurance policy.

Shaft seals

Figure 2. Attention to the seal area of the pump can extend its life.
Figure 2. Attention to the seal area of the pump can extend its life.

Historically, there are two approaches to do this. Mechanical seals allow for nearly zero leakage. Packing, on the other hand, allows a small amount of leakage along the shaft. Mechanical packing, however, isn’t considered state-of-the-art because it decreases efficiency while increasing the need for maintenance. The packing often scores the pump shaft, making it difficult to reseal and requiring a shaft repair or a replacement.

A variable is whether there’s a reservoir of lubrication for the seal. An oil reservoir helps to lubricate and cool the seal, extending seal life (Figure 2). Of further concern is dry-running or a blocked suction line. When a spinning pump isn’t moving fluid, an alternative means of lubrication greatly increases seal life.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments