Recapture those spent therms

Michael Kielgaard, P.E., says the rotating enthalpy wheel isone of the most efficient heat-recovery systems available.

By Michael Kjelgaard, P.E.

1 of 2 < 1 | 2 View on one page

The heat-recovery market has been growing steadily because of the energy reduction incentives that utility companies offer, LEED-certified building owners striving to be more "green" and energy codes requiring heat recovery systems to be used on every new project.

One of the most efficient heat recovery systems available is the rotating enthalpy wheel. The primary reason for its higher efficiency is its ability to recover moisture (latent heat) as well as thermal energy (sensible heat). This stands in contrast to most other heat recovery systems that recover only sensible heat.

How the wheel works

The enthalpy wheel (Figure 1) is constructed of a desiccant material capable of absorbing both heat and moisture. [To view Figure 1 and Tables 1 and 2, click on the Download Now button at the bottom of this article.] Exhaust air from a building or process passes through one side of the wheel. Incoming ambient supply air being conditioned for a building ventilation system or process passes through the other side. As the wheel slowly rotates, heat energy and moisture is transferred from one air stream to the other, significantly reducing the amount of energy and moisture required to condition the incoming supply air.

Enthalpy wheels have two modes of operation. During winter months, the heating/humidification mode allows warm, wet exhaust air to preheat and humidify the cold, dry incoming supply air. During summer months, the cooling/dehumidification mode allows the cool, dry exhaust air to precool and dehumidify the hot, humid incoming air.

The numbers

The key metric for the performance of any heat recovery system is its "thermal effectiveness," the ratio of the observed transfer of energy and moisture between air streams to the maximum possible transfer. The number is a function of heat exchanger construction, including size, materials, flow path and configuration.

Enthalpy wheels have a two-component total effectiveness to account for both sensible heat and moisture. The total effectiveness values typically range from 70% to 80%, meaning an enthalpy wheel recovers about three quarters of the total available energy and moisture. Although the sensible effectiveness of other systems may approach that of the enthalpy wheel, their latent effectiveness of 0% degrades their total effectiveness.

The thermal effectiveness of ARI-certified heat recovery systems are published in the ARI 1060 Directory for Air-to-Air Energy Recovery Ventilation Equipment (AAERV), which can be found at www.ariprimenet.org/.

Find the opportunities
Start with the best bet for heat recovery  any exhaust air from a building or process that requires conditioned outside air to replace it. The most common application for an enthalpy heat recovery system involves preconditioning incoming building ventilation air with exhaust air from occupied spaces. Some design options include:
  • A packaged heat recovery unit (supply fan, exhaust fan, wheel) connected to the outdoor air intake of an existing or new, larger air handling system.
  • A complete air handling system, including wheel, supply and exhaust fans, heating coils, cooling coils, humidifier and controls to provide 100% outside air at any desired temperature and humidity to a space or process.
  • A stand-alone enthalpy wheel module in a custom-engineered heat recovery system.

The enthalpy wheel may not be a good choice if the exhaust air is contaminated or toxic because of a small amount of carryover between the air streams (usually less than 5%). Consider other heat recovery systems that avoid direct contact between the supply and exhaust in these cases. Also, if the exhaust air is grease-laden, such as from a commercial kitchen hood, heat recovery isn’t recommended because of the risk of filter clogging and the inevitable grease coating that will accumulate in the heat exchanger.

Calculate the savings

After identifying an opportunity for heat recovery, determine the potential energy cost savings. There are a few powerful online programs that calculate heat recovery savings using hourly weather data for most cities. Results can be generated using either normal hourly data for design cases or historical hourly data to analyze the performance of an existing system. These programs are user friendly and don’t require an engineering degree to operate them. To determine the potential cost savings, quantify the following input data:

  • Location and elevation.
  • Exhaust and supply air flow (cfm).
  • Space or process exhaust air temperature and relative humidity (if humidified).
  • Hours of operation and operating schedule.
  • Utility rates.
  • Supply and exhaust pressure drop through the heat exchanger.
  • Thermal effectiveness of the proposed heat recovery system.

The first five items are self-explanatory. If your analysis seeks to compare the performance of units from different manufacturers, use the manufacturer's data or that from the ARI directory for the last two inputs. If, on the other hand, the purpose of the analysis is to determine the feasibility of a generic system, 0.75 in. for supply and exhaust pressure drops and 70% thermal effectiveness are good working assumptions.

Quantify the savings

Tables 1 and 2 provide the results from the simulation of a 25,000-cfm enthalpy wheel heat recovery system located in various climates. This simulation was done using the Heat Recovery Analyzer program at www.climatequest.com. The system includes a supply fan, exhaust fan, enthalpy wheel and heating and cooling coils that maintain a constant 55°F supply air temperature. The system also includes a steam humidifier to maintain a 30% minimum relative humidity indoors during winter. The input data assumed for the analysis includes:

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.

Comments

No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments